Four point $+ve$ charges of same magnitude $(Q)$ are placed at four corners of a rigid square frame as shown in figure. The plane of the frame is perpendicular to $Z-$ axis. If a $ -ve$ point charge is placed at a distance $z$ away from centre along axis $(z << L )$ then
$-ve$ charge oscillates along the $z-$ axis
It moves away from the frame
It moves slowly towards the frame and stays in the plane of the frame
It passes through the frame only once
A particle of mass $\mathrm{m}$ and charge $\mathrm{q}$ is released from rest in a uniform electric field. If there is no other force on the particle, the dependence of its speed $v$ on the distance $x$ travelled by it is correctly given by (graphs are schematic and not drawn to scale)
A uniform electric field $E =(8\,m / e ) V / m$ is created between two parallel plates of length $1 m$ as shown in figure, (where $m =$ mass of electron and $e=$ charge of electron). An electron enters the field symmetrically between the plates with a speed of $2\,m / s$. The angle of the deviation $(\theta)$ of the path of the electron as it comes out of the field will be........
An electron falls from rest through a vertical distance $h$ in a uniform and vertically upward directed electric field $E.$ The direction of electric field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest in it through the same vertical distance $h.$ The time of fall of the electron, in comparison to the time of fall of the proton is
A particle of mass $m$ and charge $q$ is thrown in a region where uniform gravitational field and electric field are present. The path of particle
An electron is released from the bottom plate $A$ as shown in the figure $(E = 10^4\, N/C)$. The velocity of the electron when it reaches plate $B$ will be nearly equal to