Four rods of same material and having the same cross section and length have been joined, as shown. The temperature of junction of four rods will be........ $^oC$
$20$
$30$
$45$
$60$
$Assertion :$ Two thin blankets put together are warmer than a single blanket of double the thickness.
$Reason :$ Thickness increases because of air layer enclosed between the two blankets.
A copper rod and a steel rod of equal cross-sections and lengths $(L)$ are joined side by side and connected between two heat baths as shown in the figure
If heat flows through them from $x = 0$ to $x = 2L$ at a steady rate and conductivities of the metals are $K_{cu}$ and $K_{steel}$ $(K_{cu} > K_{steel}),$ then the temperature varies as (convection and radiation are negligible)
Three rods of the same dimensions have thermal conductivities $3k, 2k$ and $k$. They are arranged as shown, with their ends at $100\,^oC, 50\,^oC$ and $0\,^oC$. The temperature of their junction is
Two metallic blocks $M_{1}$ and $M_{2}$ of same area of cross-section are connected to each other (as shown in figure). If the thermal conductivity of $M _{2}$ is $K$ then the thermal conductivity of $M _{1}$ will be ]...............$K$ [Assume steady state heat conduction]
Two conducting rods $A$ and $B$ of same length and cross-sectional area are connected $(i)$ In series $(ii)$ In parallel as shown. In both combination a temperature difference of $100^o C$ is maintained. If thermal conductivity of $A$ is $3K$ and that of $B$ is $K$ then the ratio of heat current flowing in parallel combination to that flowing in series combination is