From the velocity time garph of a particle moving in straight line decide which of the following is incorrect statement.
22-275

  • A
    the particle crosses its initial position
  • B
    the speed of the particle increases continuously
  • C
    the force on the particle is constant
  • D
    the acceleration of the particle is constant.

Similar Questions

A particle is situated at the origin of a coordinate system. The following forces begin to act on the particle simultaneously (Assuming particle is initially at rest)
${\vec F_1} = 5\hat i - 5\hat j + 5\hat k$            ${\vec F_2} = 2\hat i + 8\hat j + 6\hat k$
${\vec F_3} =  - 6\hat i + 4\hat j - 7\hat k$         ${\vec F_4} =  - \hat i - 3\hat j - 2\hat k$
Then the particle will move

The position vector of a particle is given as $\vec r\, = \,({t^2}\, - \,8t\, + \,12)\,\hat i\,\, + \,\,{t^2}\hat j$ The time after which velocity vector and acceleration vector becomes perpendicular to each other is equal to........$sec$

At a height $0.4\, m$ from the ground, the velocity of a projectile in vector form is $\vec v = \left( {6\hat i + 2\hat j} \right)\,m/{s}$. The angle of projection is ...... $^o$ $(g = 10\, m/s^2)$ 

A particle is moving eastwards with a speed of $6 \,m / s$. After $6 \,s$, the particle is found to be moving with same speed in a direction $60^{\circ}$ north of east. The magnitude of average acceleration in this interval of time is ....... $m / s ^2$

A particle is moving in a circular path. The acceleration and momentum of the particle at a certain moment are $\vec a = (4\hat i + 3\hat j)\ m/s^2$ and $\vec p = (8\hat i - 6\hat j)\ kg-m/s$ . The motion of the particle is