Gauss’s law should be invalid if
There were magnetic monopoles
The inverse square law were not exactly true
The velocity of light were not a universal constant
None of these
(b)
Assertion : Four point charges $q_1,$ $q_2$, $q_3$ and $q_4$ are as shown in figure. The flux over the shown Gaussian surface depends only on charges $q_1$ and $q_2$.
Reason : Electric field at all points on Gaussian surface depends only on charges $q_1$ and $q_2$ .
As shown in figure, a cuboid lies in a region with electric field $E=2 x^2 \hat{i}-4 y \hat{j}+6 \hat{k} \quad N / C$. The magnitude of charge within the cuboid is $n \varepsilon_0 C$. The value of $n$ is $…………$ (if dimension of cuboid is $1 \times 2 \times 3 \;m ^3$ )
A point charge of $+\,12 \,\mu C$ is at a distance $6 \,cm$ vertically above the centre of a square of side $12\, cm$ as shown in figure. The magnitude of the electric flux through the square will be ……. $\times 10^{3} \,Nm ^{2} / C$
What is called Gaussian surface ?
Gauss’s law states that
Confusing about what to choose? Our team will schedule a demo shortly.