Gauss’s law should be invalid if
There were magnetic monopoles
The inverse square law were not exactly true
The velocity of light were not a universal constant
None of these
Which of the following figure represents the electric field lines due to a single positive charge?
Four closed surfaces and corresponding charge distributions are shown below
Let the respective electric fluxes through the surfaces be ${\phi _1},{\phi _2},{\phi _3}$ and ${\phi _4}$ . Then
A charge $+q$ is placed somewhere inside the cavity of a thick conducting spherical shell of inner radius $R_1$ and outer radius $R_2$. A charge $+Q$ is placed at a distance $r > R_2$ from the centre of the shell. Then the electric field in the hollow cavity
A point charge causes an electric flux of $-1.0 \times 10^{3}\; N\;m ^{2} / C$ to pass through a spherical Gaussian surface of $10.0\; cm$ radius centred on the charge.
$(a)$ If the radius of the Gaussian surface were doubled, how much flux would pass through the surface?
$(b)$ What is the value of the point charge?
Gauss’s law states that