General solution of $eq^n\, 2tan\theta \, -\, cot\theta =\, -1$ is
$n\pi $
$n\pi \,-\, \pi /4$
$n\pi \,+\, \pi /4$
None of these
The number of points in $(-\infty, \infty)$, for which $x^2-x \sin x-\cos x=0$, is
The solution of the equation ${\cos ^2}x - 2\cos x = $ $4\sin x - \sin 2x,$ $\,(0 \le x \le \pi )$ is
If $1 + \cot \theta = {\rm{cosec}}\theta $, then the general value of $\theta $ is
If $sin\, \theta = sin\, \alpha$ then $sin\, \frac{\theta }{3}$ =
The total number of solution of $sin^4x + cos^4x = sinx\, cosx$ in $[0, 2\pi ]$ is equal to