The following table show os the positon of three persons between $8.00\, am$ to $8.20\, am$.
Time | Position (in $km$) | ||
Person $A$ | Person $B$ | Person $C$ | |
$8.00 \,am$ | $0$ | $0$ | $0$ |
$8.05 \,am$ | $4$ | $5$ | $10$ |
$8.10\, am$ | $13$ | $10$ | $19$ |
$8.15 \,am$ | $20$ | $15$ | $24$ |
$8.20\, am$ | $25$ | $20$ | $27$ |
$(i)$ Who is moving with constant speed ?
$(ii)$ Who has travelled maximum distance between $8.00\, am$ to $8.05\, am$ ?
$(iii)$ Calculate the average speed of person $'A^{\prime}$ in $k m h^{-1}$
Velocity$-$time graph for the motion of an object in a straight path is a straight line parallel to the time axis.
$(a)$ Identify the nature of motion of the body.
$(b)$ Find the acceleration of the body.
$(c)$ Draw the shape of distance-time graph for this type of motion.
Distinguish between terms speed and velocity.
A body is moving along a circular path of radius $R$. Find the displacement of the body when it completes half a revolution.
A frog hops along a straight line path from point $'A^{\prime}$ to point ${ }^{\prime} B ^{\prime}$ in $10\, s$ and then turns and hops to point ${ }^{\prime} C^{\prime}$ in another $5\, s$. Calculate the average speed and average velocity of the frog for the motion between $(a)(A)$ to $(B)(b)(A)$ to $(C)($ through $B)$