3.Trigonometrical Ratios, Functions and Identities
medium

જો $sin\theta_1 + sin\theta_2 + sin\theta_3 = 3,$ થાય તો $cos\theta_1 + cos\theta_2 + cos\theta_3=$

A

$3$

B

$2$

C

$1$

D

$0$

Solution

Since $\sin \theta_{1}+\sin \theta_{2}+\sin \theta_{3}=3$

$\therefore \quad \sin \theta_{1}=\sin \theta_{2}=\sin \theta_{3}=1$

$\Rightarrow \quad \theta_{1}=\theta_{2}=\theta_{3}=\frac{\pi}{2}$

$ \therefore \quad \cos \theta_{1}=\cos \theta_{2}=\cos \theta_{3}=0 $

$ \therefore \quad \cos \theta_{1} =\cos \theta_{2}=\cos \theta_{3}=0 $

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.