14.Probability
hard

If $10$ different balls are to be placed in $4$ distinct boxes at random, then the probability that two of these boxes contain exactly $2$ and $3$ balls is 

A

$\frac{945}{2^{11}}$

B

$\frac{965}{2^{11}}$

C

$\frac{945}{2^{10}}$

D

$\frac{965}{2^{10}}$

(JEE MAIN-2020)

Solution

Total ways $=4^{10}=\mathrm{n}$

Number of ways placing exactly 2 and 3 balls

in two of these boxes $=^{4} \mathrm{C}_{2} \times \frac{ 5!}{ 2! {3!}} \times 2! \times^{10} \mathrm{C}_{5} \times 2^{5}=\mathrm{m}$

Required probability $=\frac{\mathrm{m}}{\mathrm{n}}=\frac{945}{2^{10}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.