3 and 4 .Determinants and Matrices
hard

If $A=\left[\begin{array}{cc}0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0\end{array}\right]$ and $I$ is the identity matrix of order $2,$ show that
$I+A=(I-A)\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$

Option A
Option B
Option C
Option D

Solution

$L.H.S.$

$I+A$

$=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{cc}0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0\end{array}\right]$

$\left[\begin{array}{cc}1 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 1\end{array}\right]$           ………. $(1)$

$R.H.S$ :

$(I-A)\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$

$=\left(\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]-\left[\begin{array}{cc}0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0\end{array}\right]\right)\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$

$=\left[\begin{array}{cc}1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1\end{array}\right]\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$

$=\left[\begin{array}{cc}\cos \alpha+\sin \alpha \tan \frac{\alpha}{2} & -\sin \alpha+\cos \alpha \tan \frac{\alpha}{2} \\ -\cos \alpha \tan \frac{\alpha}{2}+\sin \alpha & \sin \alpha \tan \frac{\alpha}{2}+\cos \alpha\end{array}\right]$          ………. $(2)$

$1-2 \sin ^2 \frac{\alpha}{2}+2 \sin \frac{\alpha}{2}-\cos \frac{\alpha}{2} \tan \frac{\alpha}{2}  -2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}+\left(2 \cos ^2 \frac{\alpha}{2}-1\right) \tan \frac{\alpha}{2}$

$-\left(2 \cos ^2 \frac{\alpha}{2}-1\right) \tan \frac{\alpha}{2}+2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} 2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} \tan \frac{\alpha}{2}+1-2 \sin ^2 \frac{\alpha}{2}$

$1-2 \sin ^2 \frac{\alpha}{2}+2 \sin ^2 \frac{\alpha}{2} 2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}+2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}-\tan \frac{\alpha}{2}$

$-2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}+\tan \frac{\alpha}{2}+2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}  2 \sin ^2 \frac{\alpha}{2}+1-2 \sin ^2 \frac{\alpha}{2}$

$=\left[\begin{array}{cc}1  -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2}  1\end{array}\right]$

Thus, from $( 1 )$ and $( 2 )$, we get $L.H.S. = R.H.S.$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.