3 and 4 .Determinants and Matrices
medium

જો $A=\left[\begin{array}{lll}3 & \sqrt{3} & 2 \\ 4 & 2 & 0\end{array}\right]$ અને $B=\left[\begin{array}{rrr}2 & -1 & 2 \\ 1 & 2 & 4\end{array}\right]$ , તો ચકાસો કે કોઈ પણ અચળ $k$ માટે$(k B)^{\prime}=k B^{\prime}.$ 

Option A
Option B
Option C
Option D

Solution

We have

$k B=k\left[\begin{array}{rrr}2 & -1 & 2 \\ 1 & 2 & 4\end{array}\right]=\left[\begin{array}{lll}2 k & -k & 2 k \\ k & 2 k & 4 k\end{array}\right]$

Then  $(k \mathrm{B})^{\prime}=\left[\begin{array}{cc}2 k & k \\ -k & 2 k \\ 2 k & 4 k\end{array}\right]=k\left[\begin{array}{cc}2 & 1 \\ -1 & 2 \\ 2 & 4\end{array}\right]=k \mathrm{B}^{\prime}$

Thus   $(k \mathrm{B})^{\prime}=k \mathrm{B}^{\prime}$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.