4-1.Complex numbers
medium

If $(a+i b)(c+i d)(e+i f)(g+i h)=A+i B,$ then show that:

$\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=A^{2}+B^{2}$

Option A
Option B
Option C
Option D

Solution

$(a+i b)(c+i d)(e+i f)(g+i h)=A+i B$

$\therefore|(a+i b)(c+i d)(e+i f)(g+i h)|=|A+i B|$

$|(a+i b)| \times|(c+i d)| \times|(e+i f)| \times|(g+i h)|=|A+i B| \quad \because\left[\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|\right]$

$\Rightarrow \sqrt{a^{2}+b^{2}} \times \sqrt{c^{2}+d^{2}} \times \sqrt{e^{2}+f^{2}} \times \sqrt{g^{2}+h^{2}}=\sqrt{A^{2}+B^{2}}$

On squaring both sides, we obtain

$\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=A^{2}+B^{2} .$ Hence proved.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.