8. Introduction to Trigonometry
medium

જો $\sin \theta+\cos \theta=\sqrt{3},$ તો સાબિત કરો કે $\tan \theta+\cot \theta=1$

Option A
Option B
Option C
Option D

Solution

$\sin \theta+\cos \theta=\sqrt{3}$ (આપેલ છે.)

$\therefore$ $(\sin \theta+\cos \theta)^{2}=3$

$\therefore$ $\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=3$

$2 \sin \theta \cos \theta=2$ $\left[\sin ^{2} \theta+\cos ^{2} \theta=1\right]$

$\therefore$ $\sin \theta \cos \theta=1=\sin ^{2} \theta+\cos ^{2} \theta$

$\therefore$ $1 = \quad \frac{\sin ^{2}\theta + \cos ^{2} \theta}{\sin \theta \cos \theta}$

$\therefore$ $\tan \theta+\cot \theta=1$

Standard 10
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.