- Home
- Standard 10
- Mathematics
8. Introduction to Trigonometry
medium
જો $\tan \theta+\sec \theta=l,$ હોય, તો સાબિત કરો કે $\sec \theta=\frac{l^{2}+1}{2 l}.$
Option A
Option B
Option C
Option D
Solution
Given. $\tan \theta+\sec \theta=l$ …..$(i)$
[multiply by $(\sec \theta-\tan \theta)$ on numerator and denominator L.H.S.]
$\Rightarrow \quad \frac{(\tan \theta+\sec \theta)(\sec \theta-\tan \theta)}{(\sec \theta-\tan \theta)}=l \Rightarrow \frac{\left(\sec ^{2} \theta-\tan ^{2} \theta\right)}{(\sec \theta-\tan \theta)}=l$
$\Rightarrow$ $\frac{1}{\sec \theta-\tan \theta}=t$ $\left[\because \sec ^{2} \theta-\tan ^{2} \theta=1\right]$
$\Rightarrow$ $\sec \theta-\tan \theta=\frac{1}{l}$
On adding Eqs. $(i)$ and $(ii),$ we get
$2 \sec \theta=l+\frac{1}{l}$
$\sec \theta=\frac{l^{2}+1}{2 l}$ Hence proved.
Standard 10
Mathematics