2. Polynomials
hard

જો $x+y+z=0,$ તો સાબિત કરો કે $x^{3}+y^{3}+z^{3}=3 x y z$.

Option A
Option B
Option C
Option D

Solution

$x+y+z=0 $

$\therefore x+y=-z$

$\therefore $ $(x+y)^{3}=(-z)^{3}$             ($\because $ બંને બાજુ ઘન લેતા)

$\therefore $  $x^{3}+y^{3}+3 x y(-z)=-z^{3}$

$\therefore  $ $\left(x^{3}+y^{3}+z^{3}\right)-3 x y z=0$

$\therefore $  $\left(x^{3}+y^{3}+z^{3}\right)=3 x y z$

આમ,  $x+y+z=0,$ હોય તો $\left(x^{3}+y^{3}+z^{3}\right)=3 x y z$

Standard 9
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.