- Home
- Standard 9
- Mathematics
2. Polynomials
hard
If $x+2 a$ is a factor of $x^{5}-4 a^{2} x^{3}+2 x+2 a+3,$ find $a$
A
$\frac{3}{2}$
B
$\frac{1}{2}$
C
$-\frac{3}{2}$
D
$1$
Solution
Let $p(x)=x^{5}-4 a^{2} x^{3}+2 x+2 a+3$
If $x-(-2 a)$ is a factor of $p ( x )$, then $p(-2 a)=0$
$\therefore$ $p(-2 a)=(-2 a)^{5}-4 a^{2}(-2 a)^{3}+2(-2 a)+2 a+3$
$=-32 a^{5}+32 a^{5}-4 a+2 a+3$
$=-2 a+3$
Now, $\quad p(-2 a)=0$
$\Rightarrow \quad-2 a+3=0$
$\Rightarrow \quad a=\frac{3}{2}$
Standard 9
Mathematics