2. Polynomials
hard

જો $a+b+c=9$ અને $a b+b c+c a=26,$ તો $a^{2}+b^{2}+c^{2}$ શોધો:

A

$81$

B

$29$

C

$52$

D

$26$

Solution

We have that

$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+b c+2 c a$

$\Rightarrow(a+b+c)^{2}=\left(a^{2}+b^{2}+c^{2}\right)+2(a b+b c+c a)$

$\Rightarrow 9^{2}=\left(a^{2}+b^{2}+c^{2}\right)+2(26)$

[Putting the value of $a+b+c$ and $a b+b c+c a]$

$\Rightarrow 81=\left(a^{2}+b^{2}+c^{2}\right)+52$

$\Rightarrow\left(a^{2}+b^{2}+c^{2}\right)=81-52=29$

Standard 9
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.