- Home
- Standard 9
- Mathematics
2. Polynomials
hard
यदि $a+b+c=5$ और $a b+b c+c a=10$ है, तो सिद्ध कीजिए कि $a^{3}+b^{3}+c^{3}-3 a b c=-25$ है।
Option A
Option B
Option C
Option D
Solution
We know that,
$a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
$=(a+b+c)\left[a^{2}+b^{2}+c^{2}-(a b+b c+c a)\right]$
$=5\left\{a^{2}+b^{2}+c^{2}-(a b+b c+c a)\right\}$
$=5\left(a^{2}+b^{2}+c^{2}-10\right)$
Now, $\quad a+b+c=5$
Squaring both sides, we get
$(a+b+c)^{2}=5^{2}$
$\Rightarrow a^{2}+b^{2}+c^{2}+2(a b+b c+c a)=25$
$\therefore \quad a^{2}+b^{2}+c^{2}+2(10)=25$
$\Rightarrow \quad a^{2}+b^{2}+c^{2}=25-20=5$
Now, $a^{3}+b^{3}+c^{3}-3 a b c=5\left(a^{2}+b^{2}+c^{2}-10\right)$
$=5(5-10)=5(-5)=-25$
Hence, proved.
Standard 9
Mathematics