If $A=30,$ then the value of $\cos 2 A$ is $\ldots \ldots \ldots . .$
$1$
$0$
$\frac{1}{2}$
$\frac{\sqrt{3}}{2}$
$\cos 2 A =\cos (2 \times 30)=\cos 60=\frac{1}{2}$
$\sin \theta \cdot \cos (90-\theta)=\ldots \ldots \ldots$
If $\sin A =\frac{1}{2},$ then the value of $\cot A$ is
Prove that,
$\frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}=2 \operatorname{cosec} \theta$
In $\Delta ABC , m \angle C =90$ and $\cos B =\frac{1}{2},$ then $\operatorname{cosec} A =\ldots \ldots \ldots \ldots$
If $A+B+C=180,$ then $\tan \left(\frac{A+B}{2}\right)=$ ………..
Confusing about what to choose? Our team will schedule a demo shortly.