If $\mathrm{E}$ and $\mathrm{G}$ respectively denote energy and gravitational constant, then $\frac{\mathrm{E}}{\mathrm{G}}$ has the dimensions of :
$[\mathrm{M}]\left[\mathrm{L}^{-1}\right]\left[\mathrm{T}^{-1}\right]$
$\left[\mathrm{M}^{2}\right]\left[\mathrm{L}^{-1}\right]\left[\mathrm{T}^{0}\right]$
$[\mathrm{M}]\left[\mathrm{L}^{0}\right]\left[\mathrm{T}^{0}\right]$
$\left[\mathrm{M}^{2}\right]\left[\mathrm{L}^{-2}\right]\left[\mathrm{T}^{-1}\right]$
The equation of state of some gases can be expressed as $\left( {P + \frac{a}{{{V^2}}}} \right) = \frac{{b\theta }}{l}$ Where $P$ is the pressure, $V$ the volume, $\theta $ the absolute temperature and $a$ and $b$ are constants. The dimensional formula of $a$ is
The dimensional formula for impulse is
The physical quantity $'$Energy Density$'$ has same dimensional formula as
Identify the pair which has different dimensions
Planck's constant $h$, speed of light $c$ and gravitational constant $G$ are used to form a unit of length $L$ and a unit of mass $M$. Then the correct option$(s)$ is(are)
$(A)$ $M \propto \sqrt{ c }$ $(B)$ $M \propto \sqrt{ G }$ $(C)$ $L \propto \sqrt{ h }$ $(D)$ $L \propto \sqrt{G}$