- Home
- Standard 12
- Mathematics
If $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ and $M=A+A^{2}+A^{3}+\ldots .+A^{20}$, then the sum of all the elements of the matrix $\mathrm{M}$ is equal to $.....$
$1010$
$2020$
$1414$
$2121$
Solution
$A^{n}=\left[\begin{array}{lll}1 & n & \frac{n^{2}+n}{2} \\ 0 & 1 & n \\ 0 & 0 & 1\end{array}\right]$
So, required sum
$=20 \times 3+2 \times\left(\frac{20 \times 21}{2}\right)+\sum_{\mathrm{r}=1}^{20}\left(\frac{\mathrm{r}^{2}+\mathrm{r}}{2}\right)$
$=60+420+105+35 \times 41=2020$
Similar Questions
Consider the following information regarding the number of men and women workers in three factories $I,\,II$ and $III$
Men workers |
Women workers |
|
$I$ | $30$ | $25$ |
$II$ | $25$ | $31$ |
$III$ | $27$ | $26$ |
Represent the above information in the form of a $3 \times 2$ matrix. What does the entry in the third row and second column represent?