Basic of Logarithms
medium

If ${x \over {(x - 1)\,{{({x^2} + 1)}^2}}} = {1 \over 4}\left[ {{1 \over {(x - 1)}} - {{x + 1} \over {{x^2} + 1}}} \right] + y$ then $y =$

A

${{(1 - x)} \over {2{{({x^2} + 1)}^2}}}$

B

${{(1 - x)} \over {3({x^2} + 1)}}$

C

${{1 + x} \over {2\,{{({x^2} - 1)}^2}}}$

D

None of these

Solution

(a) ${x \over {(x – 1){{({x^2} + 1)}^2}}} = {1 \over 4}\left[ {{1 \over {(x – 1)}} – {{x + 1} \over {{x^2} + 1}}} \right] + y$

==>${x \over {(x – 1)\,{{({x^2} + 1)}^2}}} = {1 \over 4}\left[ {{1 \over {(x – 1)}} – {{x + 1} \over {{x^2} + 1}}} \right] + {{Ax + B} \over {{{({x^2} + 1)}^2}}}$

==> $4x = {({x^2} + 1)^2} – (x + 1)\,(x – 1)\,({x^2} + 1) + 4(Ax + B)\,(x – 1)$

==> $4A + 2 = 0$,$4B – 4A = 4$ ==> $A = {{ – 1} \over 2}$, $B = {1 \over 2}$

$\therefore y = {{Ax + B} \over {{{({x^2} + 1)}^2}}} = {1 \over 2}{{(1 – x)} \over {{{({x^2} + 1)}^2}}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.