4-1.Complex numbers
easy

If $z \ne 0$ is a complex number, then

A

${\mathop{\rm Re}\nolimits} (z) = 0 \Rightarrow {\mathop{\rm Im}\nolimits} ({z^2}) = 0$

B

${\mathop{\rm Re}\nolimits} ({z^2}) = 0 \Rightarrow {\mathop{\rm Im}\nolimits} ({z^2}) = 0$

C

${\mathop{\rm Re}\nolimits} (z) = 0 \Rightarrow {\mathop{\rm Re}\nolimits} ({z^2}) = 0$

D

None of these

Solution

(a) If $z \ne 0$. Let $z = x + iy$ ==> ${z^2} = {x^2} – {y^2} + i(2xy)$
$Re(z)= 0$ ==> $x = 0$. Therefore ${\mathop{\rm Im}\nolimits} ({z^2}) = 2xy = 0$
Thus ${\mathop{\rm Re}\nolimits} (z) = 0 \Rightarrow {\mathop{\rm Im}\nolimits} ({z^2}) = 0$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.