- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
easy
If $A = \left[ {\begin{array}{*{20}{c}}\lambda &1\\{ - 1}&{ - \lambda }\end{array}} \right]$, then for what value of $\lambda ,\,{A^2} = O$
A
$0$
B
$ \pm {\rm{ }}1$
C
$-1$
D
$1$
Solution
(b) ${A^2} = A\,.\,A = \left[ {\begin{array}{*{20}{c}}\lambda &1\\{ – 1}&{ – \lambda }\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}\lambda &1\\{ – 1}&{ – \lambda }\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{\lambda ^2} – 1}&0\\0&{ – 1 + {\lambda ^2}}\end{array}} \right] = 0$
(As given)
==> ${\lambda ^2} – 1 = 0 \Rightarrow \lambda = \pm 1$.
Standard 12
Mathematics