3.Trigonometrical Ratios, Functions and Identities
easy

If $A$ lies in the second quadrant and $3\tan A + 4 = 0,$ the value of $2\cot A - 5\cos A + \sin A$ is equal to

A

$\frac{{ - 53}}{{10}}$

B

$\frac{{ - 7}}{{10}}$

C

$\frac{7}{{10}}$

D

$\frac{{23}}{{10}}$

Solution

(d) $3\,\tan A + 4 = 0\, \Rightarrow \,\tan A = – \frac{4}{3}$ 

$ \Rightarrow \,\,\sin A\, = \pm \,\frac{{\tan A}}{{\sqrt {1 + {{\tan }^2}A} }} $

$= \pm \frac{{ – 4/3}}{{\sqrt {1 + 16/9} }} = \frac{4}{5}$        ($\because$ $A$ is in $2^{nd}$ quadrant)

and $\cos \,A = – \frac{3}{5}$. 

Thus, $2\cot A – 5\cos A + \sin A$ $ = 2\,\left( { – \frac{3}{4}} \right) – 5\,\left( { – \frac{3}{5}} \right) + \frac{4}{5} = \frac{{23}}{{10}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.