3.Trigonometrical Ratios, Functions and Identities
easy

If $\sec \theta + \tan \theta = p,$ then $\tan \theta $ is equal to

A

$\frac{{2p}}{{{p^2} - 1}}$

B

$\frac{{{p^2} - 1}}{{2p}}$

C

$\frac{{{p^2} + 1}}{{2p}}$

D

$\frac{{2p}}{{{p^2} + 1}}$

Solution

(b) $\sec \theta + \tan \theta = p\,\, $……..$(i)$

$\Rightarrow \,\sec \,\theta – \tan \theta = \frac{1}{p}$……….$(ii)$

Subtracting second from first, we get

$2\tan \theta = p – \frac{1}{p}$

$ \Rightarrow \,\tan \theta = \frac{{{p^2} – 1}}{{2p}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.