3.Trigonometrical Ratios, Functions and Identities
medium

જો $p = \frac{{2\sin \,\theta }}{{1 + \cos \theta + \sin \theta }}$, અને  $q = \frac{{\cos \theta }}{{1 + \sin \theta }},$ તો

A

$pq = 1$

B

$\frac{q}{p} = 1$

C

$q - p = 1$

D

$q + p = 1$

Solution

$p = \frac{{2\,\sin \theta }}{{1 + \cos \theta  + \sin \theta }},\,\,q = \frac{{\cos \theta }}{{1 + \sin \theta }}$

$ \Rightarrow \,\,p + q = \frac{{\cos \theta }}{{1 + \sin \theta }} + \frac{{2\,\sin \theta }}{{1 + \sin \theta  + \cos \theta }}\,$

$\Rightarrow \,p + q = 1.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.