3.Trigonometrical Ratios, Functions and Identities
medium

If $\tan \theta + \sin \theta = m$ and $\tan \theta - \sin \theta = n,$ then

A

${m^2} - {n^2} = 4\,mn$

B

${m^2} + {n^2} = 4\,mn$

C

${m^2} - {n^2} = {m^2} + {n^2}$

D

${m^2} - {n^2} = 4\sqrt {mn} $

(IIT-1970)

Solution

(d) $(m + n) = 2\,\tan \theta ,\,\,m – n = 2\,\sin \theta $

$\therefore \,\,\,{m^2} – {n^2} = 4\,\tan \theta \,.\,\sin \theta $…..$(i)$

$4\sqrt {mn} = 4\sqrt {{{\tan }^2}\theta – {{\sin }^2}\theta } $

$= 4\,\sin \theta \,.\,\tan \theta $…..$(ii)$

From $(i)$ and $(ii)$, ${m^2} – {n^2} = 4\sqrt {mn} $.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.