3.Trigonometrical Ratios, Functions and Identities
easy

જો $(\sec \alpha + \tan \alpha )(\sec \beta + \tan \beta )(\sec \gamma + \tan \gamma )$

$ = \tan \alpha \tan \beta \tan \gamma $, તો $(\sec \alpha - \tan \alpha )(\sec \beta - \tan \beta )$$(\sec \gamma - \tan \gamma ) = $

A

$\cot \alpha \cot \beta \cot \gamma $

B

$\tan \alpha \tan \beta \tan \gamma $

C

$\cot \alpha + \cot \beta + \cot \gamma $

D

$\tan \alpha + \tan \beta + \tan \gamma $

Solution

(a) Given : $(\sec \alpha + \tan \alpha )(\sec \beta + \tan \beta )(\sec \gamma + \tan \gamma )$

$ = \tan \alpha \tan \beta \tan \gamma $ …$(i)$

Let $ x = (\sec \alpha – \tan \alpha )(\sec \beta – \tan \beta )(\sec \gamma – \tan \gamma )$ …$(ii)$

Multiply both equations, $(i)$ and $(ii)$, we get

$({\sec ^2}\alpha – {\tan ^2}\alpha )({\sec ^2}\beta – {\tan ^2}\beta )({\sec ^2}\gamma – {\tan ^2}\gamma )$

$ = x.(\tan \alpha \tan \beta \tan \gamma )$

$ \Rightarrow x = \frac{1}{{\tan \alpha \tan \beta \tan \gamma }}$

$\therefore x = \cot \alpha \cot \beta \cot \gamma $

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.