3.Trigonometrical Ratios, Functions and Identities
medium

If $\alpha = 22^\circ 30',$ then $(1 + \cos \alpha )(1 + \cos 3\alpha )$ $(1 + \cos 5\alpha )(1 + \cos 7\alpha )$ equals

A

$1/8$

B

$1/4$

C

$\frac{{1 + \sqrt 2 }}{{2\sqrt 2 }}$

D

$\frac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}}$

Solution

(a) We know, $\sin 22\frac{{{1^o}}}{2} = \frac{1}{2}\sqrt {2 – \sqrt 2 } $

and $\cos 22\frac{{{1^o}}}{2} = \frac{1}{2}\sqrt {2 + \sqrt 2 } $

$\therefore \left( {1 + \cos 22\frac{{{1^o}}}{2}} \right)\,\left( {1 + \cos 67\frac{{{1^o}}}{2}} \right)\,\left( {1 + \cos 112\frac{{{1^o}}}{2}} \right)$

$\left( {1 + \cos 157\frac{{{1^o}}}{2}} \right)$

$ = \left( {1 + \frac{1}{2}\sqrt {2 + \sqrt 2 } } \right)\,\left( {1 + \frac{1}{2}\sqrt {2 – \sqrt 2 } } \right)\,\left( {1 – \frac{1}{2}\sqrt {2 – \sqrt 2 } } \right)\,$

$\left( {1 – \frac{1}{2}\sqrt {2 + \sqrt 2 } } \right)$

$ = \left[ {1 – \frac{1}{4}(2 + \sqrt 2 )} \right]\,\left[ {1 – \frac{1}{4}(2 – \sqrt 2 )} \right]$

$ = \frac{{(4 – 2 – \sqrt 2 )(4 – 2 + \sqrt 2 )}}{{16}}$

$ = \frac{{(2 – \sqrt 2 )(2 + \sqrt 2 )}}{{16}} = \frac{{4 – 2}}{{16}} = \frac{1}{8}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.