If $A$ and $B$ are two events such that $P(A) = 0.4$ , $P\,(A + B) = 0.7$ and $P\,(AB) = 0.2,$ then $P\,(B) = $

  • A

    $0.1$

  • B

    $0.3$

  • C

    $0.5$

  • D

    None of these

Similar Questions

Two cards are drawn at random and without replacement from a pack of $52$ playing cards. Finds the probability that both the cards are black.

If $A$ and $B$ are two events such that $P\,(A \cup B)\, + P\,(A \cap B) = \frac{7}{8}$ and $P\,(A) = 2\,P\,(B),$ then $P\,(A) = $

Events $\mathrm{A}$ and $\mathrm{B}$ are such that $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{7}{12}$ and $\mathrm{P}$ $($ not $ \mathrm{A}$ or not $\mathrm{B})=\frac{1}{4} .$ State whether $\mathrm{A}$ and $\mathrm{B}$ are independent?

If $A$ and $B$ are two independent events such that $P\,(A) = 0.40,\,\,P\,(B) = 0.50.$ Find $P$ (neither $A$ nor $B$)

If $A, B, C$ are three events associated with a random experiment, prove that

$P ( A \cup B \cup C ) $ $= P ( A )+ P ( B )+ P ( C )- $ $P ( A \cap B )- P ( A \cap C ) $ $- P ( B \cap C )+ $ $P ( A \cap B \cap C )$