- Home
- Standard 11
- Mathematics
13.Statistics
normal
If $\sum_{i=1}^{5}(x_i-10)=5$ and $\sum_{i=1}^{5}(x_i-10)^2=5$ then standard deviation of observations $2x_1 + 7, 2x_2 + 7, 2x_3 + 7, 2x_4 + 7$ and $2x_5 + 7$ is equal to-
A
$8$
B
$16$
C
$4$
D
$2$
Solution
$\because \operatorname{var} .\left(2 \mathrm{x}_{\mathrm{i}}+7\right)=4 \operatorname{var}\left(\mathrm{x}_{\mathrm{i}}\right)=4\left(\frac{\Sigma \mathrm{x}_{\mathrm{i}}^{2}}{5}-\left(\frac{\Sigma \mathrm{x}_{\mathrm{i}}}{5}\right)^{2}\right)$
$=4\left(\frac{25}{5}-\left(\frac{5}{5}\right)^{2}\right)=4(5-1)=16$
$\therefore \mathrm{S} \mathrm{D}=\sqrt{16}=4$
Standard 11
Mathematics
Similar Questions
Let $\mathrm{X}$ be a random variable with distribution.
$\mathrm{x}$ | $-2$ | $-1$ | $3$ | $4$ | $6$ |
$\mathrm{P}(\mathrm{X}=\mathrm{x})$ | $\frac{1}{5}$ | $\mathrm{a}$ | $\frac{1}{3}$ | $\frac{1}{5}$ | $\mathrm{~b}$ |
If the mean of $X$ is $2.3$ and variance of $X$ is $\sigma^{2}$, then $100 \sigma^{2}$ is equal to :