If a change in current of $0.01\, A$ in one coil produces a change in magnetic flux of $1.2 \times {10^{ - 2}}\,Wb$ in the other coil, then the mutual inductance of the two coils in henries is.....$H$
$0$
$0.5$
$1.2$
$3$
In $SI$, Henry is the unit of
Two conducting circular loops of radii $R_{1}$ and $\mathrm{R}_{2}$ are placed in the same plane with their centres coinciding. If $R_{1}>>R_{2}$, the mutual inductance $M$ between them will be directly proportional to:
Give two definitions of mutual inductance, give its units and write factors on which its value depends.
Two coils $A$ and $B$ having turns $300$ and $600$ respectively are placed near each other, on passing a current of $3.0$ ampere in $A$, the flux linked with A is $1.2 \times {10^{ - 4}}\,weber$ and with $B$ it is $9.0 \times {10^{ - 5}}\,weber$. The mutual inductance of the system is
The induction coil works on the principle of