Gujarati
Hindi
7.Gravitation
hard

If a man at the equator would weigh $(3/5)^{th}$ of his weight, the angular speed of the earth is

A

$\sqrt {\frac{2}{5}\,\frac{g}{R}} $

B

$\sqrt {\frac{g}{R}} $

C

$\sqrt {\frac{R}{g}} $

D

$\sqrt {\frac{2}{5}\,\frac{R}{g}} $

Solution

At equator,

$W^{\prime}=\frac{3}{5} W$

$\mathrm{mg}^{\prime}=\frac{3}{5} \mathrm{mg} \Rightarrow \mathrm{g}^{\prime}=\frac{3}{5} \mathrm{g}$

$\because \quad \mathrm{g}^{\prime}=\mathrm{g}-\omega^{2} \mathrm{R} \Rightarrow \frac{3}{5} \mathrm{g}=\mathrm{g}-\omega^{2} \mathrm{R}$

$\Rightarrow \omega^{2} R=g-\frac{3}{5} g \Rightarrow \omega=\sqrt{\frac{2}{5} \cdot \frac{g}{R}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.