If a set $A$ has $n$ elements, then the total number of subsets of $A$ is

  • A

    $n$

  • B

    ${n^2}$

  • C

    ${2^n}$

  • D

    $2n$

Similar Questions

Match each of the set on the left in the roster form with the same set on the right described in set-builder form:

$(i)$ $\{1,2,3,6\}$ $(a)$ $\{ x:x$ is a prime number and a divisor $6\} $ 
$(ii)$ $\{2,3\}$ $(b)$ $\{ x:x$ is an odd natural number less than $10\} $
$(iii)$ $\{ M , A , T , H , E , I , C , S \}$ $(c)$ $\{ x:x$ is natural number and divisor of $6\} $
$(iv)$ $\{1,3,5,7,9\}$ $(d)$ $\{ x:x$ a letter of the work $\mathrm{MATHEMATICS}\} $

Match each of the set on the left described in the roster form with the same set on the right described in the set-builder form:

$(i)$  $\{ P,R,I,N,C,A,L\} $ $(a)$  $\{ x:x$ is a positive integer and is adivisor of $18\} $
$(ii)$  $\{ \,0\,\} $ $(b)$  $\{ x:x$ is an integer and ${x^2} - 9 = 0\} $
$(iii)$  $\{ 1,2,3,6,9,18\} $ $(c)$  $\{ x:x$ is an integer and $x + 1 = 1\} $
$(iv)$  $\{ 3, - 3\} $ $(d)$  $\{ x:x$ is aletter of the word $PRINCIPAL\} $

 

Assume that $P(A)=P(B) .$ Show that $A=B$.

Given the sets $A=\{1,3,5\}, B=\{2,4,6\}$ and $C=\{0,2,4,6,8\},$ which of the following may be considered as universal set $(s)$ for all the three sets $A$, $B$ and $C$

$\{ 0,1,2,3,4,5,6\} $

In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If $A \subset B$ and $B \in C,$ then $A \in C$