Gujarati
Hindi
3-2.Motion in Plane
hard

If a stone is to hit at a point which is at a distance $d$ away and at a height $h$ above the point from where the stone starts, then what is the value of initial speed $u$ if the stone is launched at an angle $\theta $ ?

A

$\frac{g}{{\cos \,\theta }}\,\sqrt {\frac{d}{{2\left( {d\,\tan \,\theta \, - \,h} \right)}}} $

B

$\frac{d}{{\cos \,\theta }}\,\sqrt {\frac{g}{{2\left( {d\,\tan \,\theta \, - \,h} \right)}}} $

C

$\,\sqrt {\frac{{g{d^2}}}{{h\,{{\cos }^2}\,\theta }}} $

D

$\,\sqrt {\frac{{g{d^2}}}{{\left( {d\ -\ h} \right)}}} $

Solution

$h=(u \sin \theta) t-\frac{1}{2} g t^{2}$

$\quad d=(u \cos \theta) t$

or $\quad t=\frac{d}{u \cos \theta}$

$\therefore \quad h=u \sin \theta \cdot \frac{d}{u \cos \theta}-\frac{1}{2} g \cdot \frac{d^{2}}{u^{2} \cos ^{2} \theta}$

$\therefore \quad u=\frac{d}{\cos \theta} \sqrt{\frac{g}{2(d \tan \theta-h)}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.