If cathode rays are projected at right angles to a magnetic field, their trajectory is
Ellipse
Circle
Parabola
None of these
In a chamber, a uniform magnetic field of $6.5 \;G \left(1 \;G =10^{-4} \;T \right)$ is maintained. An electron is shot into the field with a speed of $4.8 \times 10^{6} \;m s ^{-1}$ normal to the field.the radius of the circular orbit of the electron is $4.2 \;cm$. obtain the frequency of revolution of the electron in its circular orbit. Does the answer depend on the speed of the electron? Explain.
$\left(e=1.5 \times 10^{-19} \;C , m_{e}=9.1 \times 10^{-31}\; kg \right)$
A electron experiences a force $\left( {4.0\,\hat i + 3.0\,\hat j} \right)\times 10^{-13} N$ in a uniform magnetic field when its velocity is $2.5\,\hat k \times \,{10^7} ms^{-1}$. When the velocity is redirected and becomes $\left( {1.5\,\hat i - 2.0\,\hat j} \right) \times {10^7}$, the magnetic force of the electron is zero. The magnetic field $\vec B$ is :
A charge $q$ is moving in a magnetic field then the magnetic force does not depend upon
A proton and an $\alpha$ -particle, having kinetic energies $K _{ p }$ and $K _{\alpha},$ respectively, enter into $a$ magnetic field at right angles.
The ratio of the radii of trajectory of proton to that of $\alpha$ -particle is $2: 1 .$ The ratio of $K _{ p }: K _{\alpha}$ is :
Which law is useful to determine relation between current and magnetic fields due to it.