3.Trigonometrical Ratios, Functions and Identities
medium

यदि दो वृत्तों के समान लंबाई वाले चाप अपने केंद्रों पर क्रमश: $60^{\circ}$ तथा $75^{\circ}$ के कोण बनाते हों, तो उनकी त्रिज्याओं का अनुपात ज्ञात कीजिए।

A

$5: 4 $

B

$5: 4 $

C

$5: 4 $

D

$5: 4 $

Solution

Let the radii of the two circles be $r_{1}$ and $r_{2} .$ Let an arc of length $l$ subtend an angle of  $60^{\circ}$ at the centre of the circle of radius $r_{1},$ while let an arc of length/subtend an angle of  $75^{\circ}$ at the centre of the circle of radius $r_{2}$

Now, $60^{\circ}=\frac{\pi}{3}$ radian and $75^{\circ}=\frac{5 \pi}{12}$ radian

We know that in a circle of radius $r$ unit, if an arc of length $l$ unit subtends an angle $\theta$ radian at the centre then

$\theta=\frac{l}{r}$ or $l=r \theta$

$\therefore l=\frac{r_{1} \pi}{3}$ and $l=\frac{r_{2} 5 \pi}{12}$

$\Rightarrow \frac{r_{1} \pi}{3}=\frac{r_{2} 5 \pi}{12}$

$\Rightarrow r_{1}=\frac{r_{2} 5}{4}$

$\Rightarrow \frac{r_{1}}{r_{2}}=\frac{5}{4}$

Thus, the ratio of the radii is $5: 4 $

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.