Gujarati
Hindi
14.Waves and Sound
medium

If the length of stretched string is shortened by $40\%$ and the tension is increased by $44\%$, then the ratio of the final and initial fundamental frequencies is

A

$3 : 4$

B

$4 : 3$

C

$1 : 3$

D

$2 : 1$

Solution

$\mathrm{n}=\frac{1}{2} \sqrt{\frac{\mathrm{T}}{\mathrm{m}}}$

$\therefore \frac{{{n_2}}}{{{n_1}}} = \frac{{{1_1}}}{1}\sqrt {\frac{{{T_2}}}{{{T_1}}}} $

$=\frac{1_{1}}{\left[1_{1}-\frac{40}{100} 1_{1}\right]} \sqrt{\left(\frac{\mathrm{T}_{1}+\frac{44}{100} \mathrm{T}_{1}}{\mathrm{T}_{1}}\right)}$

$=\frac{100}{60} \times \frac{12}{10}=2: 1$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.