If the line $3x -4y -k = 0 (k > 0)$ touches the circle $x^2 + y^2 -4x -8y -5 = 0$ at $(a, b)$ then $k + a + b$ is equal to :-
$20$
$22$
$-30$
$-28$
Two tangents are drawn from a point $P$ to the circle $x^{2}+y^{2}-2 x-4 y+4=0$, such that the angle between these tangents is $\tan ^{-1}\left(\frac{12}{5}\right)$, where $\tan ^{-1}\left(\frac{12}{5}\right) \in(0, \pi)$. If the centre of the circle is denoted by $C$ and these tangents touch the circle at points $A$ and $B$, then the ratio of the areas of $\Delta PAB$ and $\Delta CAB$ is :
Let the tangent to the circle $C _{1}: x^{2}+y^{2}=2$ at the point $M (-1,1)$ intersect the circle $C _{2}$ : $( x -3)^{2}+(y-2)^{2}=5$, at two distinct points $A$ and $B$. If the tangents to $C _{2}$ at the points $A$ and $B$ intersect at $N$, then the area of the triangle $ANB$ is equal to
A circle is drawn with $y- $ axis as a tangent and its centre at the point which is the reflection of $(3, 4)$ in the line $y = x$. The equation of the circle is
If a line, $y=m x+c$ is a tangent to the circle, $(x-3)^{2}+y^{2}=1$ and it is perpendicular to a line $\mathrm{L}_{1},$ where $\mathrm{L}_{1}$ is the tangent to the circle, $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ at the point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),$ then
Point $M$ moved along the circle $(x - 4)^2 + (y - 8)^2 = 20 $. Then it broke away from it and moving along a tangent to the circle, cuts the $x-$ axis at the point $(- 2, 0)$ . The co-ordinates of the point on the circle at which the moving point broke away can be :