- Home
- Standard 13
- Quantitative Aptitude
4.Average
hard
If the mean of $a, b, c$ is $M$ and $a b+b c+c a=0,$ then the mean of $a^{2}, b^{2}, c^{2}$ is
A
$M ^{2}$
B
$3 M ^{2}$
C
$6 M ^{2}$
D
$9 M ^{2}$
Solution
Given $\frac{a+b+c}{3}=M$
or $(a+b+c)=3 M$
$(a+b+c)^{2}=9 M^{2}$
i.e. $a^{2}+b^{2}+c^{2}+2(a b+b c+c a)=9 M^{2}$
$a b+b c+c a =0$
$a^{2}+b^{2}+c^{2} =9 M^{2}$
Standard 13
Quantitative Aptitude
Similar Questions
easy
easy