- Home
- Standard 11
- Physics
3-1.Vectors
normal
If the vectors $\vec P = a\hat i + a\hat j + 3\hat k$ and $\vec Q = a\hat i - 2\hat j - \hat k$ are perpendicular to each other then the positive value of $a$ is
A$0$
B$1$
C$2$
D$3$
Solution
$\overrightarrow{P} \cdot \overrightarrow{Q}=0$
(If $\overrightarrow{\mathrm{P}}$ and $\overrightarrow{\mathrm{Q}}$ are perpendicular to each other)
$(a \hat{i}+a \hat{j}+3 \hat{k}) \cdot(a \hat{i}-2 \hat{j}-\hat{k})=0$
$a \cdot a-a \cdot 2-3 \cdot 1=0$
$a^{2}-2 a-3=0$
$a^{2}-3 a+a-3=0$
$(a-3)(a+1)=0$
$a=3$ and $a=-1$
(If $\overrightarrow{\mathrm{P}}$ and $\overrightarrow{\mathrm{Q}}$ are perpendicular to each other)
$(a \hat{i}+a \hat{j}+3 \hat{k}) \cdot(a \hat{i}-2 \hat{j}-\hat{k})=0$
$a \cdot a-a \cdot 2-3 \cdot 1=0$
$a^{2}-2 a-3=0$
$a^{2}-3 a+a-3=0$
$(a-3)(a+1)=0$
$a=3$ and $a=-1$
Standard 11
Physics
Similar Questions
normal