Let $\overrightarrow A = \hat iA\,\cos \theta + \hat jA\,\sin \theta $ be any vector. Another vector $\overrightarrow B $ which is normal to $\overrightarrow A$ is
Let $\vec A\, = \,(\hat i\, + \,\hat j)\,$ and $\vec B\, = \,(2\hat i\, - \,\hat j)\,.$ The magnitude of a coplanar vector $\vec C$ such that $\vec A\cdot \vec C\, = \,\vec B\cdot \vec C\, = \vec A\cdot \vec B$ is given by
$\overrightarrow A = 2\hat i + 4\hat j + 4\hat k$ and $\overrightarrow B = 4\hat i + 2\hat j - 4\hat k$ are two vectors. The angle between them will be ........ $^o$
If $|\overrightarrow A \times \overrightarrow B |\, = \,|\overrightarrow A \,.\,\overrightarrow B |,$ then angle between $\overrightarrow A $ and $\overrightarrow B $ will be ........ $^o$