Let $\left| {{{\vec A}_1}} \right| = 3,\,\left| {\vec A_2} \right| = 5$, and $\left| {{{\vec A}_1} + {{\vec A}_2}} \right| = 5$. The value of $\left( {2{{\vec A}_1} + 3{{\vec A}_2}} \right)\cdot \left( {3{{\vec A}_1} - 2{{\vec A}_2}} \right)$ is
A vector has magnitude same as that of $\overrightarrow{\mathrm{A}}-=3 \hat{\mathrm{j}}+4 \hat{\mathrm{j}}$ and is parallel to $\overrightarrow{\mathrm{B}}=4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}$. The $\mathrm{x}$ and $y$ components of this vector in first quadrant are $\mathrm{x}$ and $3$ respectively where $X$=_____.
What is the product of two vectors if they are parallel or antiparallel ?
Two adjacent sides of a parallelogram are represented by the two vectors $\hat i + 2\hat j + 3\hat k$ and $3\hat i - 2\hat j + \hat k$. What is the area of parallelogram
If $\left| {\vec A } \right|\, = \,2$ and $\left| {\vec B } \right|\, = \,4$ then match the relation in Column $-I$ with the angle $\theta $ between $\vec A$ and $\vec B$ in Column $-II$.
Column $-I$ | Column $-II$ |
$(a)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,0$ | $(i)$ $\theta = \,{30^o}$ |
$(b)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,8$ | $(ii)$ $\theta = \,{45^o}$ |
$(c)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,4$ | $(iii)$ $\theta = \,{90^o}$ |
$(d)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,4\sqrt 2$ | $(iv)$ $\theta = \,{0^o}$ |