Imagine the situation in which the given arrangement is placed inside a trolley that can move only in the horizontal direction, as shown in figure. If the trolley is accelerated horizontally along the positive $x$ -axis with $a_0$, then Identify the correct statement $(s)$ related to the tension $T$ in the string

37-708

  • A

    No value of $a_0$ exists at which $T$ is equal to zero

  • B

    There exists a value of $a_0$ at which $T = mg$

  • C

    If $T < mg$, then it must be more than $\mu Mg$

  • D

    All of the above

Similar Questions

A block of mass $0.1 \,kg$ is held against a wall by applying a horizontal force of $5\, N$ on the block. If the coefficient of friction between the block and the wall is $0.5$, the magnitude of the frictional force acting on the block is ........ $N$

  • [IIT 1994]

A block of mass $4\,kg$ is placed on a rough horizontal plane A time dependent force $F = kt^2$ acts on the block, where $k = 2\,N/s^2$. Coefficient of friction $\mu = 0.8$. Force of friction between block and the plane at $t = 2\,s$ is ....... $N$

Why coefficient friction is considered as static friction ? 

A block of mass $15 \;kg$ is placed on a long trolley. The coefficient of static friction between the block and the trolley is $0.18$. The trolley accelerates from rest with $0.5 \;m s ^{-2}$ for $20 \;s$ and then moves with uniform velocity. Discuss the motion of the block as vlewed by

$(a)$ a stationary observer on the ground,

$(b)$ an observer moving with the trolley.

Two beads connected by massless inextensible string are placed over the fixed ring as shown in figure. Mass of each bead is $m$ , and there is no friction between $B$ and ring. Find minimum value of coefficient of friction between $A$ and ring so that system remains in equilibrium. ( $C \to $center of ring, $AC$ line is vertical)