In a gravity free space, a man of mass $M$ standing at a height $h$ above the floor, throws a ball of mass $m$ straight down with a speed $u$ . When the ball reaches the floor, the distance of the man above the floor will be
$h\left( {1 + \frac{m}{M}} \right)$
$\left( {1 + \frac{M}{m}} \right)h$
$h$
$\frac {m}{M}h$
A $T$ shaped object with dimensions shown in the figure, is lying a smooth floor. A force $'\vec F'$ is applied at the point $P$ parallel to $AB,$ such that the object has only the translational motion without rotation. Find the location of $P$ with respect to $C$
Two racing cars of masses $m_1$ and $m_2$ are moving in circles of radii $r_1$ and $r_2$ respectively. Their speeds are such that each makes a complete circle in the same time $t$. The ratio of the angular speeds of the first to the second car is
Two uniform thin identical rods $AB$ and $CD$ each of mass $M$ and length $L$ are joined so as to form a cross as shown. The moment of inertia of the cross about a bisector line $EF$ is (Line $EF$ is perpendicular to $ABCD$ plane)
The given figure shows a disc of mass $M$ and radius $R$ lying in the $x-y$ plane with its centre on $x$ axis at a distance a from the origin. then the moment of inertia of the disc about the $x-$ axis is
A hoop of radius $r$ and mass $m$ rotating with an angular velocity ${\omega _0}$ is placed on a rough horizontal surface. The initial velocity of the centre of the hoop is zero. What will be the velocity of the centre of the hoop when it ceases to slip?