In a reaction involving hydrolysis of an organic chloride in presence of large excess of water$RCl + {H_2}O \to ROH + HCl$
Molecularity is $2, $ order of reaction is also $2$
Molecularity is $2$ , order of reaction is $1$
Molecularity is $1$, order of reaction is $ 2$
Molecularity is $1,$ order of reaction is also $ 1$
Reaction : $KCl{O_3} + 6FeS{O_4} + 3{H_2}S{O_4} \to $ $KCl + 3F{e_2}{\left( {S{O_4}} \right)_3} + 3{H_2}O$
Which is True $(T)$ and False $(F) $ in the following sentence ?
The reaction is complex.
Which of the following is the fastest reaction
The results given in the below table were obtained during kinetic studies of the following reaction:
$2 A + B \longrightarrow C + D$
Experiment | $[ A ] / molL ^{-1}$ | $[ B ] / molL ^{-1}$ | Initial $rate/molL$ $^{-1}$ $\min ^{-1}$ |
$I$ | $0.1$ | $0.1$ | $6.00 \times 10^{-3}$ |
$II$ | $0.1$ | $0.2$ | $2.40 \times 10^{-2}$ |
$III$ | $0.2$ | $0.1$ | $1.20 \times 10^{-2}$ |
$IV$ | $X$ | $0.2$ | $7.20 \times 10^{-2}$ |
$V$ | $0.3$ | $Y$ | $2.88 \times 10^{-1}$ |
$X$ and $Y$ in the given table are respectively :
Assertion : The kinetics of the reaction -
$mA + nB + pC \to m' X + n 'Y + p 'Z$
obey the rate expression as $\frac{{dX}}{{dt}} = k{[A]^m}{[B]^n}$.
Reason : The rate of the reaction does not depend upon the concentration of $C$.
If reaction between $A$ and $B$ to give $C$shows first order kinetics in $A$ and second order in $B$, the rate equation can be written as