4-2.Friction
hard

In figure, two blocks are separated by a uniform strut attached to each block with frictionless pins. Block $A$ weighs $400\,N$, block $B$ weighs $300\,N$, and the strut $A B$ weigh $200\,N$. If $\mu=0.25$ under $B$, determine the minimum coefficient of friction under $A$ to prevent motion.

A

$0.4$

B

$0.2$

C

$0.8$

D

$0.1$

Solution

(a)

Consider $F BD$ of structure.

Applying equilibrium equations,

$Av + Bv =200 N$

$A _{ H }= B _{ H}{ \ldots \text { (ii) }}$

From F BD of block B,

$B _{ H }+ F _{ B } \cos 60^{\circ}- N _{ B } \sin 60^{\circ}=0$

$N_B \cos 60^{\circ}-B_V-300+F_V \sin 60^{\circ}=0$

$F _{ B }=0.25 N _{ B }$

$B _{ H }-0.74 N _{ B }=0 \ldots \text {.(iii) }$

$- B _{ V }+0.71 N _{ B }=300$

$F _{ A }- A _{ H }=0$

$N _{ A }- A _{ V }=400$

$F _{ A }=\mu_{ A } N _{ A }$

$\therefore \mu_{ A } N _{ A }- A _{ H }=0$.

On solving above equations, we get

$N _{ A }=650 N , F _{ A }=260 N , F _{ A }=\mu_{ A } N _{ A }$

$\therefore \mu_{ A }=\frac{260}{250}=0.4$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.