- Home
- Standard 11
- Physics
4-2.Friction
normal
In the diagram, $BAC$ is a rigid fixed rough wire and angle $BAC$ is $60^o$. $P$ and $Q$ are two identical rings of mass $m$ connected by a light elastic string of natural length $2a$ and elastic constant $\frac{mg}{a}$. If $P$ and $Q$ are in equilibrium when $PA = AQ = 3a$ then the least coefficient of friction between the ring and the wire is $\mu$. Then value of $\mu + \sqrt 3 $ is :-

A
$2$
B
$3$
C
$4$
D
$7$
Solution

$\mathrm{mg} \sin \theta-\mathrm{f}-\mathrm{kx} \cos \theta=0$
$\mathrm{N}-\mathrm{kx} \sin \theta-\mathrm{mg} \cos \theta=0$
$\mathrm{f}=\mu \mathrm{N}$
Standard 11
Physics
Similar Questions
easy