In the List-$I$ below, four different paths of a particle are given as functions of time. In these functions, $\alpha$ and $\beta$ are positive constants of appropriate dimensions and $\alpha \neq \beta$. In each case, the force acting on the particle is either zero or conservative. In List-II, five physical quantities of the particle are mentioned: $\overrightarrow{ p }$ is the linear momentum, $\bar{L}$ is the angular momentum about the origin, $K$ is the kinetic energy, $U$ is the potential energy and $E$ is the total energy. Match each path in List-$I$ with those quantities in List-$II$, which are conserved for that path.

List-$I$ List-$II$
$P$ $\dot{r}(t)=\alpha t \hat{t}+\beta t \hat{j}$ $1$ $\overrightarrow{ p }$
$Q$ $\dot{r}(t)=\alpha \cos \omega t \hat{i}+\beta \sin \omega t \hat{j}$ $2$ $\overrightarrow{ L }$
$R$ $\dot{r}(t)=\alpha(\cos \omega t \hat{i}+\sin \omega t \hat{j})$ $3$ $K$
$S$ $\dot{r}(t)=\alpha t \hat{i}+\frac{\beta}{2} t^2 \hat{j}$ $4$ $U$
  $5$ $E$

  • [IIT 2018]
  • A

    $P \rightarrow 1,2,3,4,5 ; \quad Q \rightarrow 2,5 ; \quad R \rightarrow 2,3,4,5 ; \quad S \rightarrow 5$

  • B

    $P \rightarrow 1,2,3,4,5 ; \quad Q \rightarrow 3,5 ; \quad R \rightarrow 2,3,4,5 ; \quad S \rightarrow 2,5$

  • C

    $P \rightarrow 2,3,4 ; \quad Q \rightarrow 5 ; \quad R \rightarrow 1,2,4 ; \quad S \rightarrow 2,5$

  • D

    $P \rightarrow 1,2,3,5 ; \quad Q \rightarrow 2,5 ; \quad R \rightarrow 2,3,4,5 ; \quad S \rightarrow 2,5$

Similar Questions

Obtain the relation between torque of a system of particles and angular moment. 

A particle of mass $M=0.2 kg$ is initially at rest in the $x y$-plane at a point $( x =-l, y =-h)$, where $l=10 m$ and $h=1 m$. The particle is accelerated at time $t =0$ with a constant acceleration $a =10 m / s ^2$ along the positive $x$-direction. Its angular momentum and torque with respect to the origin, in SI units, are represented by $\vec{L}$ and $\vec{\tau}$, respectively. $\hat{i}, \hat{j}$ and $\hat{k}$ are unit vectors along the positive $x , y$ and $z$-directions, respectively. If $\hat{k}=\hat{i} \times \hat{j}$ then which of the following statement($s$) is(are) correct?

$(A)$ The particle arrives at the point $(x=l, y=-h)$ at time $t =2 s$.

$(B)$ $\vec{\tau}=2 \hat{ k }$ when the particle passes through the point $(x=l, y=-h)$

$(C)$ $\overrightarrow{ L }=4 \hat{ k }$ when the particle passes through the point $(x=l, y=-h)$

$(D)$ $\vec{\tau}=\hat{ k }$ when the particle passes through the point $(x=0, y=-h)$

  • [IIT 2021]

In an orbital motion, the angular momentum vector is

  • [AIIMS 2004]

A metre stick is pivoted about its centre. A piece of wax of mass $20 \,g$ travelling horizontally and perpendicular to it at $5 \,m / s$ strikes and adheres to one end of the stick so that the stick starts to rotate in a horizontal circle. Given the moment of inertia of the stick and wax about the pivot is $0.02 \,kg m ^2$, the initial angular velocity of the stick is ........... $rad / s$

A ring of mass $M$ and radius $R$ is rotating with angular speed $\omega$ about a fixed vertical axis passing through its centre $O$ with two point masses each of mass $\frac{ M }{8}$ at rest at $O$. These masses can move radially outwards along two massless rods fixed on the ring as shown in the figure. At some instant the angular speed of the system is $\frac{8}{9} \omega$ and one of the masses is at a distance of $\frac{3}{5} R$ from $O$. At this instant the distance of the other mass from $O$ is

  • [IIT 2015]