Inversion of sucrose is
Zero order reaction
First order reaction
Second order reaction
Third order reaction
For a reactions $A + B \to $product, it was found that rate of reaction increases four times if concentration of $ ‘A’$ is doubled, but the rate of reaction remains unaffected. If concentration of $‘B’ $ is doubled. Hence, the rate law for the reaction is
Which one of the following is wrongly matched
For a certain reaction, the rate $=k[A]^2[B]$, when the initial concentration of $A$ is tripled keeping concentration of $B$ constant, the initial rate would
The following data is given for reaction between $A$ and $B$
$S.NO.$ | $[A]$ $mol.L^{-1}$ | $[B]$ $mol.L^{-1}$ | $Rate$ $mol.L^{-1}\,sec^{-1}$ |
$I$ | $1 \times 10^{-2}$ | $2 \times 10^{-2}$ | $2 \times 10^{-4}$ |
$II$ | $2 \times 10^{-2}$ | $2 \times 10^{-2}$ | $4 \times 10^{-4}$ |
$III$ | $2 \times 10^{-2}$ | $4 \times 10^{-2}$ | $8 \times 10^{-4}$ |
Which of the following are correct statements -
$(a)$ Rate constant of the reaction $10^{-4}$
$(b)$ Rate law of the reaction is $k[A][B]$
$(c)$ Rate of reaction increases four times on doubling the concentration of both the reactant
For the first order decompsition reaction of $N_2O_5$, it is found that -
$(a)$ $2N_2O_5\rightarrow\,\,4NO_2(g)+O_2(g)-\frac{d[N_2O_5]}{dt}=k[N_2O_5]$
$(a)$ $N_2O_5\rightarrow\,\,2NO_2(g)+1/2\,\,O_2(g)-\frac{d[N_2O_5]}{dt}=k'[N_2O_5]$
which of the following is true ?