Let $A = \left\{ {{a_1},\,{a_2},\,{a_3}.....} \right\}$ be a set containing $n$ elements. Two subsets $P$ and $Q$ of it is formed independently. The number of ways in which subsets can be formed such that $(P-Q)$ contains exactly $2$ elements, is
${}^n{C_2}\ {2^{n - 2}}$
${}^n{C_2}\ {3^{n - 2}}$
${}^n{C_2}\ {2^n}$
None of these
A group of $9$ students, $s 1, s 2, \ldots, s 9$, is to be divided to form three teams $X, Y$ and, $Z$ of sizes $2,3$ , and $4$, respectively. Suppose that $s_1$ cannot be selected for the team $X$, and $s_2$ cannot be selected for the team $Y$. Then the number of ways to form such teams, is. . . .
The least value of a natural number $n$ such that $\left(\frac{n-1}{5}\right)+\left(\frac{n-1}{6}\right) < \left(\frac{n}{7}\right)$, where $\left(\frac{n}{r}\right)=\frac{n !}{(n-r) ! r !}, i$
The students $S _{1}, S _{2}, \ldots \ldots, S _{10}$ are to be divided into $3$ groups $A , B$ and $C$ such that each group has at least one student and the group $C$ has at most $3$ students. Then the total number of possibilities of forming such groups is ........ .
$^{14}{C_4} + \sum\limits_{j = 1}^4 {^{18 - j}{C_3}} $ is equal to
Consider a class of $5$ girls and $7$ boys. The number of different teams consisting of $2$ girls and $3$ boys that can be formed from this class, if there are two specific boys $A$ and $B$, who refuse to be the members of the same team, is